The set of complex numbers (e.g., $4+3 i$)

Above is the set of all Complex Numbers (e.g., $4+3 i$)
These concepts are defined by properties (distinctive features, essences) and therefore have
strict boundaries (nothing is "sort of a" whole number) and no internal structure (2 and 427 and 3, 343 are equally good members of the set of whole numbers)
$\mathrm{N}=$ natural numbers $(1,2, \ldots)$
Whole numbers $=(0,1,2 \ldots) \quad$ (conjunction of naturals AND zero)
Integers $=(\ldots-2,-1,0,1,2 \ldots) \quad$ (conjunction of wholes AND negatives)
Rationals $=$ a RATIO (hence "rational") m / n where $\mathrm{m} \& \mathrm{n}$ are integers excluding $\mathrm{n}=0$. A ratio of 2 integers. Decimal form is terminating or repeating.

Irrationals $=$ no ratio form. Decimal form is nonterminating nonrepeating (π, square rt. of 2 or 7).
Real Numbers $=$ Rationals AND Irrationals (conjunction of 2 sets)
Pure Imaginary include the "imaginary element" (sq. rt. of -1) as a factor.
Complex Numbers have a REAL component and an IMAGINARY component.

