The “typical” neuron is designed to receive neurotransmitter messages from other neurons. Sensory receptors, on the other hand, are specialized to receive sensory input from the outside world.

Vision

The Eye and the Visual Receptors

Stimulus which activates visual receptors: light waves in the visible spectrum.

Light waves are a small range of wavelengths (~350-750 nanometers) of electromagnetic energy.

Transparent Cornea
- Curve of cornea helps to focus light waves on retina
- “Astigmatism” causes 2 focal points instead of 1

Green Muscular Iris & Black Pupil Hole
- Muscles of iris under ANS control:
 - Symp: dilate pupil
 - Parasymp: constrict
Collagen structure of the human eye

Center (Macula) of Retina Needed for Detail Vision (Fovea especially)

Macular Degeneration

Loss of the critical central region of retina

Smoking is #1 preventable cause

What you might see

Rods vs Cones

- ~120 million/eye
- more in periphery
- very sensitive (low threshold)
- ~100 rods share same optic nerve fiber to brain
- night vision (scotopic vision)

- ~6 million/eye
- most in center, especially in the fovea
- Need bright light to reach threshold (photopic vision)
- have more private lines to brain - good for detail vision or “acuity”
- color vision

Looking Into Left Eye: Optic Disk or “Blind Spot”-
axons exit eye to form optic nerve

You can locate your own blind spot with the demo on p. 156.

Lens becomes less flexible later in life — need reading glasses
Turning Light Waves Into Electrical Messages (Transduction)

- Rods & cones have molecules of light sensitive photopigment embedded in cell membrane.

 Rods — rhodopsin
 Cones — 1 of 3 iodopsins
 - Like metabotropic transmitter receptors, except they receive light!
 - But receiving light has a surprising effect

Cones

- 3 different types, absorbing different ranges of wavelengths
- Supports the Trichromatic theory

2 Theories of Color Vision Proposed in 1800’s
Trichromatic Theory ("Component Theory") — 3 different types of color receptors work together to represent all colors of the spectrum.
- Opponent Process Theory — cells in the visual pathway receive input about pairs of colors (R-G or B-Y). One color makes them fire faster, the other makes them fire slower.

What Do You See?

- ~ 8% of men and <1% of women suffer R/G color deficiency
Many Regions of Cortex Involved in Visual Processing

- Primary visual cortex is just the first level of cortical processing
- Damage here → “cortical blindness”
- Secondary “visual cortex” has separate regions devoted to shape, color, location, & movement that extend beyond occipital lobe.

Visual Agnosia (not recognizing)

- Damage to different parts of this system lead to different kinds of visual agnosia (object agnosia, color agnosia, movement agnosia)
- Prosopagnosia- can’t recognize individual faces (or similar members of other complex classes of visual stimuli) – most often seen after damage to the inferior temporal lobe’s fusiform gyrus (in pink)

Visual Processing Cases

- Object Agnosia
 - http://www.youtube.com/watch?v=rwQpaHQ0hYw
 - Object agnosia & trouble locating visual stimulus
 - http://www.youtube.com/watch?v=dG8JGg-d2Pk&feature=related
- Prosopagnosia (“face blindness”)
 - http://www.youtube.com/watch?v=vwCnzmPkh7k&list=UU943UnajVxe9SpFJpwxpLsQ&index=8
- Blindsight
 - http://www.youtube.com/watch?v=RuNDkcbq8PY&feature=related
- Motion blindness
 - http://www.youtube.com/watch?v=B47Js1MtT4w&list=PL22D01B36165478AD
• Hair cells in the auditory and vestibular systems mechanically open ion channels.
Organ of Corti

http://www.youtube.com/watch?v=8wgfowbbTwO

Tectorial Membrane

Book Fig. 7.2

Fluid Waves Traveling Thru Cochlea Cause Basilar Membrane Movement

- Where wave peaks varies with pitch & determines which hair cells will be stimulated.

Georg von Bekesy – 1961 Nobel Prize for his research on the traveling waves in the cochlea.

http://www.youtube.com/watch?v=dyenMluFaUw&feature=related
http://www.youtube.com/watch?v=WO84KJyH5k8&feature=related

“Tonotopic” Relationship Between Place in Cochlea and Pitch

If our inner ear is working perfectly we can hear frequencies between 20-20,000 cps

“Place theory” best explains pitch perception for the upper 80% of our hearing range & explains freq specific hearing losses

20-100 – frequency theory

100-4000 – volley theory

Friction on tips of hair cells opens mechanically-gated K+ ion channels

K+ enters hair cells causing depolarization & transmitter release!

(fluid in cochlea has a different ion balance – disruption of that balance can lead to hearing abnormal sounds (tinnitus))

Normal & “Trampled” Hair Cells Exposed to Loud Sounds

- http://www.youtube.com/watch?v=Xo9bwcO3yRo (dancing hair cell)
- http://www.youtube.com/watch?v=ulA5CEQzRo
- (stereocilia)

Sound Localization

Brain processes time & intensity & phase differences in what the right & left ears hear.
Sound from right arrives sooner and louder in the right ear.
Note: Input from each ear goes to both sides of brain but more strongly to contralateral side. Brainstem areas involved in quick sound localization and auditory reflexes.

Types of Deafness
- ~250 million with hearing impairments; only a fraction are completely deaf
- Conductive or Middle Ear Deafness – auditory stimulus does not pass normally through middle ear to cochlea
- Nerve/Neural or Inner Ear Deafness – due to damage to inner ear hair cells or auditory nerve due to:
 - Genetics
 - Perinatal problems (illness during pregnancy, hypoxia during birth, PVS)
 - Illness (meningitis, MS, Meniere’s)
 - Ototoxic drugs (quinine, some antibiotics, high doses of NSAIDS, nicotine)
 - Loud sounds
- [Video Link](http://www.youtube.com/watch?v=9gOyThhJcxY)
- Mosquito tones

Cochlear Implant can take the place of missing or damaged hair cells as long as auditory nerve fibers still run from cochlea to brain.