UMN vs LMN

- UMN vs LMN
- UMN (Upper Motor Neuron) vs LMN (Lower Motor Neuron)
- UMN Damage vs LMN Damage
- Reflex Changes After UMN Damage
 - hyperactive stretch reflex, particularly in anti-gravity muscles
 - too much muscle tone (hypertonia or spasticity)
 - clonus (rapid repetitive response to stretch)
 - altered Babinski & weaker superficial reflexes after corticospinal damage

Other Descending Tracts:
- Extrapyramidal Motor Pathways
- Rubrospinal pathway to regulate tone of flexors in limbs for locomotion & to organize repetitive movements that involve the flexors (e.g. walking, running, crawling)
- Vestibulospinal pathway to stimulate extensors (antigravity) for standing, posture
- Tectospinal pathway for reflexive motor reactions to visual stimuli
- Reticulospinal pathway to regulate muscle tone by modulating the stretch reflex
- Corticospinal path modulates activity of these tracts as well as spinal reflexes
- (don’t need to memorize exact route of these)
UMN Syndromes

- UMN damage above red nucleus (rubrospinal still working) → “darcortic peace posture” with arms flexed, hands fisted (upper picture)
- UMN damage between red nucleus and vestibulospinal & reticulospinal tracts (lower paths still working) → “decerebrate posture”

Amyotrophic Lateral Sclerosis (ALS)
or Lou Gehrig’s Disease

- Progressive loss of LMNs as well as corticospinal pathway (UMNs). Several genes involved.
- Onset most often in late 50’s-early 60’s; more men affected
- 70% will die within 5 years (eventually cannot swallow, breathe)

ALS – Symptoms

- First symptoms usually muscle cramping & twitching, with feelings of fatigue & weakness in a limb
- Loss of LMNs causes weakness, paralysis, loss of reflexes & atrophy in affected muscles. Loss of UMs causes spasticity (muscle stiffness, cramping from too much tonus).
- Combination of UMN + LMN symptoms at multiple levels is fairly diagnostic
- New treatments: riluzole (Rilutek) slows progression (on average extends life 2-3 months) and noninvasive ventilation & gastrostomy perhaps 6 months, but research on gene therapy or stem cell implants probably critical

New discovery (9/2011):

- Genetic mutation on chromosome 9 which seems to be linked to ALS as well as fronto-temporal dementia

Cross-Sections

- Cord does not look the same at all levels. Notice:
 1) the difference in the amount of white matter in the upper vs lower cord & whether or not the fasc. cuneatus is present
 2) Size of ventral horns (which reflects # of LMNs at each level
- You should be able to recognize the level of these sections
• Cervical 7

• Spinal Cord Injuries (SCI)
 • ~10,000/yr in US; 50% disabled
 • Today about 10% die (used to be 90%)
 • Estimated 500,000 survivors, 200,000 in wheelchairs
 • About 2/3 are under 30; 82% are males

• Causes of SCIs
 • Similar pattern to head injury data:
 • ~45% in motor vehicle accidents
 • ~22% in falls
 • ~16% due to violence
 • ~13% in sports
 • Must assume those with head injuries have spinal injury too until we know otherwise.

• What Damages Cord?
 • Can have SC concussion or contusion
 • Overstretching or twisting of cord (like a CHI)
 • Fracture or dislocation of vertebrae causing laceration or compression of cord
 • Penetrating injury (e.g. bullet)
 • Vascular problem causing infarct
 • SCIWORA - spinal cord injury without radiographic abnormality
• **Location of Damage**
 - Cervical vertebrae most fragile & likely to fracture
 - Most mobile parts of spine (C5-C6, T12-L1, C1-C2) most likely to dislocate or overstretch
 - Cervical injuries - quadriplegia
 - Lumbar injuries - paraplegia
 - Can also have incomplete injuries

• **Extrapyramidal Motor System**
 - Descending extrapyramidal paths receive input from other parts of motor system:
 - From the cerebellum
 - From the basal ganglia or “corpus striatum”

• **Basal Ganglia or Corpus Striatum**
 - Interconnected set of nuclei (gray matter) buried within the cerebral hemispheres that have primarily motor functions
 - Best known components:
 - Caudate nuclei (“tail shaped nuclei”)
 - Putamen (“seashell”)
 - Globus pallidus (“pale globe”)
• Basal Ganglia or “Striatum”
 - Caudate & putamen get input from cortex, thalamus & substantia nigra, a midbrain motor area
 - They send commands to globus pallidus which sends them on to the motor portions of thalamus & brainstem
 - Very interconnected system with lots of feedback loops

• Functions
 - The basal ganglia are important for:
 - Facilitating or initiating motor programs – often multiple programs at once (via what is known as its “direct pathway”)
 - Inhibiting undesired movements; terminating voluntary movements (via what is known as its “indirect pathway”)
 - We might think of the BG serving as both the gas pedal and the brake pedal for the activity of the motor cortex
• **Parkinson’s Disease**
 (paralysis agitans or shaking palsy)

 • About 1% of those over 50 have PD (~ 1,000,000 total in US; 60,000 new cases/yr; 90% cases occur after age 60)

 • Progressive deterioration of DA input to basal ganglia- the “nigrostriatal pathway” from substantia nigra in midbrain to the “striatum” in forebrain

 • We lose about 4% of those DA neurons/decade, but those with PD have accelerated loss (70% or more gone)

 • Results in difficulty initiating movements & tremor

![PD vs normal SN](image1.png)

Normal # of DA cells vs PD

• The nigrostriatal path sends DA messages from the substantia nigra to the basal ganglia.

![Normal # of DA cells vs PD](image2.png)

• **Classic PD Symptoms**

 • Worsening **bradykinesia** (slowing of movement) & akinesia (loss of movement)

 • **Rigidity** (too much muscle tone); clumsiness, decreased postural stability so tends to fall

 • “Pill-rolling” **tremor-at-rest**

 • Reduction in movement is also seen in lack of facial expression & blinking; shuffling walk without assoc. arm movements; soft, halting, monotone voice; slow blinks; small writing; feeling stuck or frozen

![Normal # of DA cells vs PD](image3.png)

 • If video at above link does not immediately appear, click on video # 31 in their list
Parkinson’s Disease

- About 1/100 of those over 50 have PD (about 1,000,000 total in US)
- Progressive loss of DA cells in substantia nigra which normally send messages to basal ganglia
- We all gradually lose neurons but those with PD may have accelerated loss (70% or more gone)
- Symptoms: Difficulty initiating movements, slow movements, muscle rigidity & tremors-at-rest

Possible Causes

- Environmental toxin of some sort (industrial heavy metals, pesticides, “free radicals” currently under study)
 - http://www.youtube.com/watch?v=oW33gBI3yys&context=C3c0a567AD0EpsToPDs&UqDpaMakaYEJ97F_lty23RoQ8 (go to 9 min)
- Genetics (strong link in early-onset PD; weak link in regular PD)
- Brain trauma may increase your risk

PD Concordance in Twins

- Late-Onset (161 pairs studied)
 - MZ 13%
 - DZ 16%
- Early Onset (16 pairs)
 - MZ 100% (4 pairs)
 - DZ 16%

Pallidotomy

http://www.youtube.com/watch?v=7bEKQGHrzrc
http://www.youtube.com/watch#v=1DPw8NI5I&feature=related
Treatments
• Increase DA production with l-dopa
 – Problems: l-dopa induced side effects (dyskinesia, dystonia) & loss of effectiveness over time
 http://www.youtube.com/watch?v=2TU2s3VxEI4
• Prevent DA breakdown or reuptake
 – E.g. Eldepryl (selegeline)
• Stimulate DA receptors with DA agonist
 – Parlodel (bromocriptine); Mirapex (pramipexole)
• Counteract the effects of the “opposing” neurotransmitter Ach to decrease motor symptoms (Artane, Cogentin (benztropine))

Balance Between DA and Ach in Basal Ganglia
• When drug effectiveness declines, experimental options include:
 • Deep brain (thalamic) stimulation to block hyperactivity in this system
 http://www.youtube.com/watch?v=a1xdB1jNBu8
 • Lesion (damage) other parts of the system
 Pallidotomy; thalamotomy (Michael J. Fox)
 • Transplant of DA producing cells into brain (but the results we saw were, sadly, not replicated)

Alternative Surgery – Thalamotomy
• Damages motor portion of thalamus
• Michael J. Fox had this surgery done

When Drug Therapy Fails
• Parkinson’s Disease Update
 • Although PD is thought of as a motor disorder, the decline in DA also produces cognitive and emotional changes in some
 • Major depression
 • “bradyphrenia” (cognitive slowing); decreased attention
 • “frontal lobe” symptoms (disinhibition of behavior, poor judgment and planning)
 • Full-blown dementia in ~40-50% (associated with neuropathological sign called Lewy bodies)
 • PD treatment, on the other hand, can produce hallucinations and other symptoms of psychosis
Impairment of the Inhibitory Functions of the BG
- Dyskinesias – involuntary movements
 - Chorea (“dance-like”) – quicker irregular movements
 - Athetosis – slower writhing, twisting movements
- Dystonias – abnormalities of excessive muscle tone; muscle spasms
- Can also have much more complex involuntary movements

Tourette Syndrome
- Another hereditary BG disorder characterized by involuntary movements
- Multiple motor tics - simple tics of face or limbs and/or more organized complex tics (touching, grimacing, pinching, poking, adjusting, hitting, jumping, kissing, throwing, gesturing) plus:
 - Phonic or vocal tics - both simple (throat-clearing, coughing, hiccuping, grunting, yelping) and/or complex tics (actual words, coprolalia, echolalia, palilalia, assuming different voices, talking to oneself in different voices)
 - Seems to affect frontal lobe-BG connection that is important for our ability to inhibit actions

Link with Other Disorders
- ~50-60% also suffer OCD (others estimate that up to 90% experience some involuntary touching compulsions, ritualistic behaviors, intrusive thoughts)
- ~50-90% show evidence of ADHD as well; first signs of GTS are usually impulsive, hyperactive behaviors (before tics appear)
- About 30% have learning disabilities, emotional lability, rage, aggressiveness; 40-50% depressed
- Evidence suggests a single gene with sex-linked, varied forms of expression of disinhibition
- 50-73% concordance in identical twins vs 8-22% in fraternal twins

Huntington's Disease
- Transmitted by a dominant gene on chromosome 4 (about 30,000 US cases with 150,000 at risk kids)
- Deterioration of striatum produces involuntary chorea, athetosis & other motor difficulties
- Cortical deterioration causes progressive & debilitating dementia, aggressiveness, mood swings, depression, psychosis
- Death due to health complications in 15-20 yrs
• Huntington’s Disease
 - Bad gene has excess “CAG repeats” (more than 36-250 instead of usual 28 or fewer) resulting in an abnormal form of protein known as huntingtin.
 - The more repeats, the earlier symptoms appear.
 - # of repeats can increase across generations, especially in kids inheriting gene from father
 - Brain damage may be due to decrease in normal protective huntingtin + adverse effects of abnormal protein on critical growth factors keeping cells alive.
 - HD may cause increased susceptibility to excitotoxic glutamate and/or abnormal programmed cell death.

• Treatments for HD
 - Genetic testing to identify presence of the gene
 - Involuntary movements may be decreased by DA blockers (antipsychotics)
 - New drugs being tried to delay progression:
 - Rilutek (riluzole), Neurontin (gabapentin) decrease glutamate transmission
 - Rapamycin (transplant drug) speeds elimination of abnormal protein
 - Growth factor supplementation being studied
 - Experimentation with brain cell transplants/surgeries is underway