Euclidean Geometry: An Introduction to Mathematical Work Math 3600 Spring 2019

Circles, Coming 'Round Again

One of the most useful results about circles is Proposition III.20 which relates an *inscribed* angle in a circle to a *central* angle in that circle. Let us try to see what happens when the angle does not sit on the circumference of the circle.

10.1 Conjecture. Let Γ be a circle with center *O*. Let *X* be a point in the interior of the circle, and suppose that two lines ℓ and *m* intersect at *X* so that ℓ meets Γ at points *A* and *A'* and *m* meets Γ at *B* and *B'*. Then twice angle *AXB* is congruent to angle *AOB* and angle *A'OB'* taken together.

10.2 Question. Consider the situation from the last conjecture, but instead assume that *X* lies outside Γ . What happens here? Formulate a conjecture.

10.3 Conjecture. If two chords of a circle subtend different acute angles at points of a circle, then the smaller angle belongs to the shorter chord.

10.4 Conjecture. If a triangle has two different angles, then the smaller angle has the longer angle bisector (measured from the vertex to the opposite side).

10.5 Conjecture (Steiner-Lehmus). If a triangle has two angle bisectors which are congruent (measured from the vertex to the opposite side), then the triangle is isosceles.

10.6 Conjecture. Let *BC* be a chord of circle \mathscr{C} , let \widehat{BC} be the arc of \mathscr{C} which is bounded by *B* and *C* and does not contain the center of \mathscr{C} . Let *M* be the midpoint of \widehat{BC} . For a point *A* on the arc \widehat{BC} , show that as *A* moves along the arc from *B* to *M*, the sums AB + AC increase.

The next theorem is very pretty, and is commonly attributed to Archimedes.

10.7 Conjecture (Archimedes' Theorem of the Broken Chord). Let AB and BC be two chords of a circle \mathscr{C} , where BC is greater than AB. (Such a configuration is sometimes called a "broken chord.") Let M be the midpoint of arc ABC and F the foot of the perpendicular from M to chord BC. Then F is the midpoint of the broken chord, that is, AB and BF taken together are congruent to FC.

