Euclidean Geometry: An Introduction to Mathematical Work

Math 3600
Spring 2019

Circles, Coming 'Round Again

One of the most useful results about circles is Proposition III. 20 which relates an inscribed angle in a circle to a central angle in that circle. Let us try to see what happens when the angle does not sit on the circumference of the circle.
10.1 Conjecture. Let Γ be a circle with center O. Let X be a point in the interior of the circle, and suppose that two lines ℓ and m intersect at X so that ℓ meets Γ at points A and A^{\prime} and m meets Γ at B and B^{\prime}. Then twice angle $A X B$ is congruent to angle $A O B$ and angle $A^{\prime} O B^{\prime}$ taken together.
10.2 Question. Consider the situation from the last conjecture, but instead assume that X lies outside Γ. What happens here? Formulate a conjecture.
10.3 Conjecture. If two chords of a circle subtend different acute angles at points of a circle, then the smaller angle belongs to the shorter chord.
10.4 Conjecture. If a triangle has two different angles, then the smaller angle has the longer angle bisector (measured from the vertex to the opposite side).
10.5 Conjecture (Steiner-Lehmus). If a triangle has two angle bisectors which are congruent (measured from the vertex to the opposite side), then the triangle is isosceles.
10.6 Conjecture. Let $B C$ be a chord of circle \mathscr{C}, let $\widehat{B C}$ be the arc of \mathscr{C} which is bounded by B and C and does not contain the center of \mathscr{C}. Let M be the midpoint of $\widehat{B C}$. For a point A on the $\operatorname{arc} \widehat{B C}$, show that as A moves along the arc from B to M, the sums $A B+A C$ increase.

The next theorem is very pretty, and is commonly attributed to Archimedes.
10.7 Conjecture (Archimedes' Theorem of the Broken Chord). Let $A B$ and $B C$ be two chords of a circle \mathscr{C}, where $B C$ is greater than $A B$. (Such a configuration is sometimes called a "broken chord.") Let M be the midpoint of $\operatorname{arc} A B C$ and F the foot of the perpendicular from M to chord $B C$. Then F is the midpoint of the broken chord, that is, $A B$ and $B F$ taken together are congruent to $F C$.

