Euclidean Geometry:

An Introduction to Mathematical Work

Math 3600
Spring 2019

Circles

We have learned quite a bit about basic polygonal shapes, especially triangles, and various species of quadrilaterals. Now we turn our attention to circles. This is the subject of Book III in Euclid's Elements. We already have one beautiful theorem about circles, that of Thales, but we'd like to have more.

Read the Elements Book III Propositions 1-34. For the following propositions you should work in the axiomatic style of Euclid using I.1-34, III.1-34 and any previously proved results.
9.1 Conjecture. Let $A B$ and $A C$ be two tangent lines from a point A outside a circle. Then $A B$ is congruent to $A C$.

Definition. We say that two circles meet at right angles if the radii of the two circles to a point of intersection make a right angle.
9.2 Conjecture. Let Γ and Ω be two circles with centers G and O, respectively. Suppose that these circles meet at two points A and B. If $G A O$ is a right angle, then GBO is a right angle.

Definition. A quadrilateral $A B C D$ is said to be a cyclic quadrilateral if there is a circle Γ such that the four vertices A, B, C and D lie on Γ.
9.3 Conjecture. A rectangle is always a cyclic quadrilateral.
9.4 Conjecture (Cyclic Quadrilateral Theorem). Let A, B, C and D be four points. The quadrilateral $A B C D$ is cyclic if and only if angle $D A C$ is congruent to $D B C$.
9.5 Conjecture. Let two circles be tangent at a point A. If two lines are drawn through A meeting one circle at further points B and C and meeting the other circle at points D and E, then $B C$ is parallel to $D E$.

