Euclidean Geometry:

An Introduction to Mathematical Work

Math 3600
Spring 2019

Polygons

Now it is time to extend our venue to polygons with an arbitrary number of sides.

Definition. Let n be a natural number. An n-gon is a figure consisting of n points $A_{1}, A_{2}, \ldots, A_{n}$, prescribed in order and called vertices, and the n line segments, called sides, $A_{1} A_{2}, A_{2} A_{3}, \ldots, A_{n-1} A_{n}, A_{n} A_{1}$.

A polygon is an n-gon where n has not been specified.
5.1 Problem. Suppose that A, B, C are three consecutive vertices of a polygon. If at the vertex B we extend one of the two sides through B to a ray, then we create a new angle, called an exterior angle to the polygon at B.

This construction has a choice in it. In principle, this could be a problem. Describe the problem, then state and prove a theorem that resolves the issue.
5.2 Conjecture. The exterior angles of a pentagon, one choice made at each vertex, add up to four right angles.
5.3 Question. What is the sum of the exterior angles of a hexagon? What about a general n-gon? Can you find a way to build on our understanding from small values of n, to general values of n ?

Note: Commonly used terminology includes the following: 3-gon $=$ triangle, 4 -gon $=$ quadrilateral, 5 -gon $=$ pentagon, 6-gon $=$ hexagon .

