Sun

Atmosphere – Observations via SOHO, SDO
- Photosphere
 - “surface”, 6000 K
 - Granules, granulation, convection
- Spectra
- Chromosphere
 - Pinkish
 - 10,000 K
 - UV source
- Corona
 - Visible during eclipses
 - 1-2 million K, x-ray source
 - solar winds, aurora

Sunspots
- Umbra, Penumbra, sunspot groups
- Solar rotation – differential rotation
- Sunspot cycle
 - 11 years – peak number of spots
 - location of spots – Maunder butterfly diagram
- Magnetic Field
 - Zeeman effect
 - 22 year cycle – full sunspot cycle
 - Polarity of spots in each hemisphere – flips with next cycle

Solar Activity
- Flares, Prominences
- Coronal Mass Ejections
- Spicules
- Helioseismology

Stars
- Apparent Magnitude, m
- Distances
 - Parallax \(p = 1/d \)
 - Parsec, Lightyear
- Absolute Magnitude, M
- Luminosity
 - Stefan-Boltzmann Law and Surface area
 \(L = R^2 T^4 \) (in solar units)
 - Black body properties
- Temperature determination
 - Wien's Law
 - Photometry
- Spectra
 - Spectral Classification System – OBAFGKMLT
 - Temperature scale
H-R diagram
 Main Sequence
 Red Giants
 Supergiants
 White Dwarfs
 Spectroscopic parallax

Mass Determination
 Binary Stars
 Kepler’s Laws
 Center of Mass
 Optical Binaries
 Physical Binaries
 Visual Binary - Mass determination
 Spectroscopic Binary - Mass determination
 Eclipsing Binary - Mass, Radius determination

Mass – Luminosity relation (for Main Sequence)

Star formation
 Large Scale Star Formation
 Giant Molecular Clouds
 Types of stars formed
 H II regions – Orion Nebula, proplyds

Small Scale Star Formation
 protostars
 T Tauri Stars
 H-H objects – Jets, bipolar outflow

Main sequence properties
 Energy production – Fusion in the Core
 Einstein's Special Theory
 Proton - Proton Chain
 protons = hydrogen atoms
 helium, energy (gamma ray), neutrino, positron
 deuterium
 CNO cycle
 Radiative Zone
 Random Walk
 Convective Zone

Stellar Interiors
 Helioseismology, asteroseismology
 Neutrino detectors
 Computer models
 Hydrostatic Equilibrium
 Conservation of Energy
 Conservation of mass
 Energy transport laws

Zero-age Main Sequence (ZAMS)
 Time on Main Sequence – Mass of star relation
Main sequence characteristics
Range of mass, temperature, luminosity, lifetime of stars on MS

Stellar Death
Very low mass – Brown dwarf, not even stars
Medium Mass – up to 8 solar masses
 Helium core
 Hydrogen shell fusion
 Thermal energy
 Red Giant
 Electron degenerate core
 Helium Flash
 Helium fusion
 Triple alpha process - produces Carbon, Oxygen
 Helium shell flashes, thermal pulses
Planetary Nebula Stage
 Helium shell flashes, Winds,
 Mass loss – bipolar outflow, other ejection shapes
White Dwarf
 Electron Degenerate
 Chandrasekhar Limit = 1.4 solar masses
Black Dwarf
White Dwarf Binary
 Close binary
 Roche Lobe
 Mass transfer
 Accretion disk
 Nova
 Recurrent nova – U Scorpii
High Mass Stars (greater than 8 solar masses)
Mass loss
 Bipolar outflow
 Strong winds
Supergiants – Red or Blue
 More fusion stages - C, O, Ne, Si etc
 Iron (Fe) fusion
 Core collapse
 Neutron degenerate core – neutron star
Supernova
 Bright
 Forms neutron star or black hole
 Release of neutrinos
 Shockwave
 Production of Heavy elements
Two types of Supernova
 Type Ia - White Dwarf pushed over Chandrasekhar limit
 Type II - Large Mass star core collapse
Hyperfueva – gamma-ray bursts

Historical Supernovae & Supernovae Remnants

1054 Supernova
Tycho’s & Kepler’s Supernovae
Cas A, Crab Nebula, Gum Nebula

Supernova 1987A
Feb 1987
In the Large Magellanic Cloud
Pre-supernova star = Sanduleak -69 202
Detection of Neutrinos
Detection of heavy element production
Ring structures around it

Neutron stars
Discovery – Jocelyn Bell

Pulsars
Link between pulsars, supernova = Crab nebula/pulsar
Conservation of Angular momentum
Magnetic fields
Synchrotron Radiation – non-thermal radiation

Black Holes
Special Theory of Relativity
Speed of light is constant
Nothing goes faster than light
Effects due to velocities close to the speed of light

General Theory of Relativity
Matter warps space
Warped space influences matter, light in it
Mercury’s orbital precession
Sun’s deflection of light

Black hole characteristics
Mass
Singularity
Schwarzschild Radius/Event horizon – depends only on mass
Tidal effects
Detection of black holes

Unusual objects
PSR 1913+16
PSR J0737-3039A
Cygnus X-1
XTE J0929-314
Magnetars
Quark/Strange Stars
Gamma-ray sources