Large Mass Death

Before the End - Large Scale Mass Loss

Fusing	Main Fusion Products	Time
Н		million years
He		years
С		years
Ne		
0		
Si		
Why so short? He What is the rest of the star like? C O Ne		e Fe

What's next? Fusion. Good? BAD! Iron fusionen.	ergy!		
Iron fuses, core collapses, core gets hotter, fuses iron faster			

End result -

Core collapses in _

 $p + e \Rightarrow n + \nu$

 $\text{Core} \Rightarrow \text{ball of neutrons -} \underline{\qquad} \text{Star}$

What about the rest of the star?

Delayed collapses on to tiny core

Huge energy generation

Expels layers out - "big star go BOOM!"

Supernova!

Very important event because...

Very ____

Material spread out

Trigger _____

Produces _____

Remnant - neutron star (smaller mass) or black hole (higher mass) Rare event - 1 supernova/galaxy/century

Type I - brighter, no _____ in spectra

100 200 Days E 0

-19 Type I -18 -17 -16 -15 -14 -13Type

Supernova Remnants Hot for a long time Give off x-rays, visible, radio light Age of explosion

Supernova 1987A (SN87A)

The best observed supernova of all time! Visible to the naked eye - first since 1604! Sanduleak -69 202 identified as source Neutrinos observed! Nucleosynthesis (production of heavy elements) observed And today we see.....

7