The Motion of Planets

History of Astronomy

Scientific Method

1. __________
2. __________
3. __________
4. __________
_________ = Why something happens
_________ = How something happens

Assumptions of Early Models

- __________ - Earth in the middle
- Everything orbits the Earth
- Stars are located on the Celestial Sphere
- Everything moves in __________ motions

The Dark Ages

Nicolaus Copernicus (1473-1543)

Errors building up
Must be a better way!
Let’s try a __________ system!
Not any better though
Tycho Brahe (1546-1601)

Naked eye observations of planets
Accuracy through ______________
Best observations of planetary positions
Hired “nerd” to help calculate model
Died….

Johannes Kepler (1571-1630)

Worked for Brahe
Took data after his death
Spent years figuring out the motions of the planets
Came up with…

Three Laws of ______________

1. Planets move in __________ orbits with the Sun at one foci

2. Planets move ______ at perihelion than at aphelion.

3. Period is related to average distance

\[P = \frac{k}{a} \]

Longer orbits - greater average distance
Need the value of \(k \) to use the formula
\(k \) depends upon the situation
Can be used for anything orbiting anything else
Special version of Kepler’s third Law –
If the object is orbiting the Sun
P – measured in years,
a – measured in A. U., then....

\[P^2 = a^3 \]

Galileo Galilei
(1564-1642)
Knew of Copernicus’s & Kepler’s work
Used a telescope to look at the sky
What did he see?

The Moon was an ________ object

Venus has ________

Jupiter has objects around it

Saturn is imperfect

The Sun is imperfect

Isaac Newton
(1642-1727)
The ultimate “nerd”
Able to explain Kepler’s laws
Had to start with the basics -
The Three Laws of ______

1. Law of ______ - Objects do whatever they are currently doing unless something messes around with them.
2. Force defined
 \[F = ma \]
 \(F = \text{force} \)
 \(m = \text{_______} \)
 \(a = \text{_________} = \text{change in motion} \)

3. For every action there is an __________________________.
 The three laws of motion form the basis for the most important law of all (astronomically speaking)
 Newton’s Universal Law of Gravitation

\[F = \frac{GM_1 M_2}{R^2} \]
\(F = \text{force of gravity} \)
\(G = \text{constant} \)
\(M_1, M_2 = \text{masses} \)
\(R = \text{distance from “centers”} \)
Gravity is the most important force in the Universe

Planetary Configurations
Superior Planets (beyond Earth’s orbit)

Planetary Configurations
Inferior Planets (inside Earth’s orbit)