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Fluid intelligence (Gf ) refers to the ability to reason and to solve
new problems independently of previously acquired knowledge.
Gf is critical for a wide variety of cognitive tasks, and it is
considered one of the most important factors in learning. More-
over, Gf is closely related to professional and educational success,
especially in complex and demanding environments. Although
performance on tests of Gf can be improved through direct practice
on the tests themselves, there is no evidence that training on any
other regimen yields increased Gf in adults. Furthermore, there is
a long history of research into cognitive training showing that,
although performance on trained tasks can increase dramatically,
transfer of this learning to other tasks remains poor. Here, we
present evidence for transfer from training on a demanding work-
ing memory task to measures of Gf. This transfer results even
though the trained task is entirely different from the intelligence
test itself. Furthermore, we demonstrate that the extent of gain in
intelligence critically depends on the amount of training: the more
training, the more improvement in Gf. That is, the training effect
is dosage-dependent. Thus, in contrast to many previous studies,
we conclude that it is possible to improve Gf without practicing the
testing tasks themselves, opening a wide range of applications.

cognitive training ! transfer ! individual differences !
executive processes ! control processes

F luid intelligence (Gf ) is a complex human ability that allows
us to adapt our thinking to a new cognitive problem or

situation (1). Gf is critical for a wide variety of cognitive tasks (2),
and it is considered one of the most important factors in learning.
Moreover, Gf is closely related to professional and educational
success (3–6), especially in complex and demanding environ-
ments (7). There is considerable agreement that Gf is robust
against influences of education and socialization, and it is
commonly seen as having a strong hereditary component (2, 8,
9). Gf can be compromised as seen in the effects of certain
manipulations that threaten one’s group membership (10). But
can Gf be improved by any means?

In the domain of psychopharmacology, although there is a
market for so-called ‘‘smart drugs,’’ there is no study showing
evidence for a drug-related increase in Gf in healthy adults
although there are certain psychomotor stimulants and D2
dopamine-receptor agonists that have effects on isolated cog-
nitive processes (11, 12). Beyond the psychopharmacology, there
is a growing interest in whether computer and video games may
increase IQ. But in contrast to suggestive advertisements, there
is no empirical evidence that computer games enhance anything
beyond task-specific performance (13, 14) and selective visuo-
spatial attention (15).

Of course, one can easily increase performance in tests of Gf
by simply practicing the tests themselves (16). However, it has
been demonstrated that practice on these tests decreases their
novelty and with that the underlying Gf-processes (5) so that the
predictive value of the tests for other tasks disappears (17).
These findings are compatible with a long history of research on
cognitive training in psychological and educational science show-
ing that, although performance on trained tasks can increase

dramatically, transfer of this learning to other tasks or domains
remains shockingly rare (18–21).

Despite the many failures to find transfer in any domain, the
sheer importance of identifying tasks that can lead to improve-
ment in other tasks recommends continued investigation of
transfer effects. With respect to Gf, the issue is whether one can
identify a task that shares many of the features and processes of
Gf tasks, but that is still different enough from the Gf tasks
themselves to avoid mere practice effects. A recently proposed
hypothesis by Halford et al. (22) might serve as a useful frame-
work for the design of a transfer study in which one would like
to improve Gf by means of a working memory task. Their claim
is that working memory and intelligence share a common
capacity constraint. This capacity constraint can be expressed
either by the number of items that can be held in working
memory or by the number of interrelationships among elements
in a reasoning task. The reason for a common capacity limitation
is assumed to lie in the common demand for attention when
temporary binding processes are taking place to form represen-
tations in reasoning tasks (22). Other authors came to a related
conclusion, stating that Gf and working memory are primarily
related through attentional control processes (23, 24). Further-
more, Carpenter et al. (1) have proposed that the ability to derive
abstract relations and to maintain a large set of possible goals in
working memory accounts for individual differences in typical
tasks that measure Gf.

The underlying neural circuitries provide additional evidence
for the shared variance between working memory and Gf in that
both seem to rely on similar neural networks, most consistently
located in lateral prefrontal and parietal cortices (23, 25).
Therefore, it seems plausible that the training of a certain neural
circuit might lead to transfer on other tasks that engage similar
or at least overlapping neural circuits.

Although working memory capacity and Gf may share com-
mon variance, they are far from being isomorphic (26, 27). That
is, there are factors other than working memory capacity con-
tributing to individual differences in Gf. Nevertheless, we pro-
pose that, with a training intervention that strongly relies on
binding processes and attentional control, it may be possible to
produce transfer effects from a trained task to a reasoning task
in which performance relies to a large extent on the same
processes. There are, indeed, some studies showing that training
on working memory with young healthy adults may lead to
effects that go beyond a specific training effect (28, 29). So, it
seems that there is some potential for transfer after training on
working memory.
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To investigate whether training on working memory leads to
transfer to Gf, we conducted four individual experiments all
using a newly developed training paradigm consisting of a very
demanding working memory task, illustrated in Fig. 1. In this
task, participants saw two series of stimuli that were synchro-
nously presented at the rate of 3 s per stimulus. One string of
stimuli consisted of single letters whereas the other consisted of
individual spatial locations marked on a screen. The task was to
decide for each string whether the current stimulus matched the
one that was presented n items back in the series. The value of
n varied from one block of trials to another, with adjustments
made continuously for each participant based on performance.
As performance improved, n incremented by one item; as it
worsened, n decremented by one item. Thus, the task changed
adaptively so that it always remained demanding, and this
demand was tailored to individual participants. This form of
training engaged processes required for the management of two
simultaneous tasks; it engaged executive processes required for
each task; and it discouraged the development of task-specific
strategies and the engagement of automatic processes because of
the variation in n and because of the inclusion of two different
classes of stimuli.

The aim of the training intervention was the investigation of
the effects of training on the working memory task and its impact
on Gf. We accomplished this investigation by pretesting partic-
ipants on a measure of Gf and then posttesting them on another
form of this measure. Because we hypothesized that any alter-
ation of the processing system would take some time to be
effective, an important difference among the four experiments
was the number of training sessions between pre- and posttests,
ranging from 8 to 19 sessions. To control for mere retest effects,
the performance of the trained groups was compared with
control groups who were also assessed on Gf, but who were not
trained between the two testing sessions.

Results
Analyses of the training functions revealed that all four training
groups improved in their performance on the working memory
task comparably (Fig. 2).§ What interests us most, however, is the
dramatic improvement on the test of Gf in the trained groups

(Fig. 3a). Although the gain in the control groups was also
significant, presumably because of retest effects (t(34) ! 2.08;
P " 0.05; Cohen’s d ! 0.25), the improvement in the groups that
received the apparent benefit of training was substantially
superior (t(33) ! 5.53; P " 0.001; Cohen’s d ! 0.65), which was
confirmed by the significant group # test-session interaction
(F(1,67) ! 5.27; P " 0.05; !p

2 ! 0.07). A subsequent analysis of
the gain scores (posttest minus pretest) as a function of training
time (8, 12, 17, or 19 days) showed that transfer to fluid
intelligence varied as a function of training time (F(3,30) ! 9.25;
P " 0.001; !p

2 ! 0.48; Fig. 3b). Analyses of covariance (AN-
COVA) with the factor group (trained vs. control), the posttest
scores as the dependent variable, and the pretest scores as the
covariate revealed a trend for group differences after 12 days
(F(1,19) ! 1.93; P ! 0.09; !p

2 ! 0.09), and statistically significant
group differences after 17 (F(1,13) ! 4.65; P " 0.05; !p

2 ! 0.26),
and 19 training days (F(1,12) ! 4.53; P " 0.05; !p

2 ! 0.27). Post
hoc analyses (Gabriel’s procedure; two-tailed) for the training
group revealed significant differences between the following
groups: 8 vs. 17 days (P " 0.01); 8 vs. 19 days (P " 0.001); and
12 vs. 19 days (P " 0.01). There was a trend for a difference
between 12 and 17 days (P ! 0.06). These analyses indicate that
the gain in fluid intelligence was responsive to the dosage of
training.

It is important to note that the gain in Gf is strictly training-
related and not due to preexisting individual differences in
intelligence or working memory. There was an effect of training
(F(1,68) ! 6.38; P " 0.05; !p

2 ! 0.09) irrespective of initial Gf as
shown by dividing the sample into high and low performers in Gf
at pretest (by median split). However, there was also a main
effect of performance group (F(1,68) ! 4.56; P " 0.05; !p

2 !
0.07), showing that participants with initially lower Gf generally
showed even larger gains in Gf. There was no significant
performance group by training-gain interaction (F " 1).

Further, the gain in Gf was not dependent on initial working
memory capacity as assessed either by pretest performance in a
digit-span task (F(1,68) " 0.3) or a reading-span task (F(1,52) "
0.1; note that reading span was not assessed in the 8-day group).
Therefore, our cognitive training proved to be useful for all
participants and had no adverse effects for participants with high
initial working memory capacity.

Additional analyses showed that there was training-related
transfer on the digit-span task (group # session interaction:

§Note that the specific training gain was well explained by a linear function for all groups
(8 days training: R2 ! 0.78, F(1,134) ! 473.44, P " 0.001; 12 days training: R2 ! 0.81,
F(1,202) ! 863.59, P " 0.001; 17 days training: R2 ! 0.73, F(1,287) ! 769.63; 19 days training:
R2 ! 0.79, F(1,321) ! 1230.23, P " 0.001).

Fig. 1. The n-back task that was used as the training task, illustrated for a
2-back condition. The letters were presented auditorily at the same rate as the
spatial material was presented visually.

Fig. 2. Performance increase in the trained task shown separately for each
training group. For each session, the mean level of n achieved by the partic-
ipants is presented. The level of n depends on the participants’ performance.
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F(1,67) ! 14.08; P " 0.001; !p
2 ! 0.17), but not on the reading

span task, in which both groups improved equally in the posttest
session. However, the training-time-dependent gain in Gf re-
mained intact after controlling for the gain in working memory
capacity as measured by a performance increase in both the
digit-span task (ANCOVA: F(3,29) ! 8.93; P " 0.001; !p

2 ! 0.48)
and the reading-span task (ANCOVA: F(2,22) ! 6.19; P " 0.01;
!p

2 ! 0.36). Furthermore, the training-time-dependent gain in Gf
also remained intact after controlling for the averaged n-back
level reached in the last training session (ANCOVA: F(3,29) !
7.80; P " 0.001 !p

2 ! 0.45).
In sum, these data indicate that the transfer effect on Gf scores

goes beyond an increase in working memory capacity alone. We
discuss this point in more detail below.

Discussion
We set the stage for our observed transfer effect by establishing
that there is an impressive learning curve for the training task in
all four experiments as expressed in comparable monotonically
increasing training functions across all of the training intervals.
These training results indicate that participants were challenged
and motivated to improve their performance even after a
training time as long as 4 weeks.

Having established a training effect, we then documented the
striking result of a training-related gain in Gf, a finding that has
not been reported previously. How can such a transfer effect
arise?

Operationally, we believe that the gain in Gf emerges because
of the inherent properties of the training task. The adaptive
character of the training leads to continual engagement of
executive processes while only minimally allowing the develop-
ment of automatic processes and task-specific strategies. As
such, it engages g-related processes (5, 17). Furthermore, the
particular working memory task we used, the ‘‘dual n-back’’ task,
engages multiple executive processes, including ones required to
inhibit irrelevant items, ones required to monitor ongoing per-
formance, ones required to manage two tasks simultaneously,
and ones required to update representations in memory. In
addition, it engages binding processes between the items (i.e.,
squares in spatial positions and consonants) and their temporal
context (30, 31).

Examining the transfer task in terms of the processes involved,
there is evidence that it shares some important features with the

training task, which might help to explain the transfer from the
training task to the Gf measures. First of all, it has been argued
that the strong relationship between working memory and Gf
primarily results from the involvement of attentional control
being essential for both skills (22). By this account, one reason
for having obtained transfer between working memory and
measures of Gf is that our training procedure may have facili-
tated the ability to control attention. This ability would come
about because the constant updating of memory representations
with the presentation of each new stimulus requires the engage-
ment of mechanisms to shift attention. Also, our training task
discourages the development of simple task-specific strategies
that can proceed in the absence of controlled allocation of
attention.

Carpenter et al. (1) have proposed that the ability to abstract
relations and to maintain a large set of possible goals in working
memory accounts for individual differences in tasks such as the
Raven’s Advanced Progressive Matrices test, and therefore in
Gf. This ability to maintain multiple goals in working memory
seems especially crucial in speeded Gf tasks because one can
speed performance by maintaining more goals in mind at once
to foster selection among representations. Therefore, after
training working memory, participants should be able to come
up with more correct solutions within the given time limit of our
speeded version of the Gf task.

However, our additional analyses show that there is more to
transfer than mere improvement in working memory capacity in
that the increase in Gf was not directly related to either
preexisting individual differences in working memory capacity
or to the gain in working memory capacity as measured by simple
or complex spans, or even, by the specific training effect itself.

Therefore, it seems that the training-related gain on Gf goes
beyond what sheer capacity measures even if working memory
capacity is relevant to both classes of tasks. Of course, tasks that
measure Gf are picking up other cognitive skills as well, and
perhaps the training is having an effect on these skills even if
measures of capacity are not sensitive to them. One example
might be multiple-task management skills. Our dual n-back task
requires the ability to manage two n-back tasks simultaneously,
and it may be this skill that is common to tasks that measure Gf.
Our measures of working memory capacity, by contrast, index
capacity only for simpler working memory tasks that are not so

Fig. 3. Transfer effects. (a) Mean values and corresponding standard errors of the fluid intelligence test scores for the control and the trained groups, collapsed
over training time. (b) The gain scores (posttest minus pretest scores) of the intelligence improvement plotted for training group as a function of training time.
Error bars represent standard errors.
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demanding of multiple-task management skills. So, sheer work-
ing memory capacity alone may be an important component of
measures of Gf, but beyond this capacity, there may be other
skills not measured by simpler working memory tasks that are
engaged by our training task and that train skills needed in
measures of Gf. It may still be the case that training on the dual
n-back task promotes development of these non-capacity skills.
A line of evidence consistent with this idea shows that individual
differences in both working memory span and in n-back tasks are
related to individual differences in Gf (23, 25, 32).

The finding that the transfer to Gf remained even after taking
the specific training effect into account seems to be counterin-
tuitive, especially because the specific training effect is also
related to training time. The reason for this capacity might be
that participants with a very high level of n at the end of the
training period may have developed very task specific strategies,
which obviously boosts n-back performance, but may prevent
transfer because these strategies remain too task-specific (5, 20).
The averaged n-back level in the last session is therefore not
critical to predicting a gain in Gf; rather, it seems that working
at the capacity limit promotes transfer to Gf.

Of particular importance is the finding that preexisting inter-
individual differences in Gf as measured in the pretest are not
related to the training-related gain in Gf. This finding indicates
that the effect of training is not restricted to participants within
a certain range of cognitive abilities. Both initial low-Gf as well
as initial high-Gf participants profit from training similarly. Still,
although the interaction was not reliable, we remain cautious
about this result because numerically the low-Gf participants
showed somewhat larger gains than the high-Gf participants. Of
course, this result may be accounted for by regression to the
mean, but it may also be that the training was of truly greater
benefit to lower Gf participants, if not reliably so in our study.

The dose-responsive gain in Gf indicates that the training
benefit is not a threshold phenomenon. The constraints of our
experiments do not permit us to know how much longer we could
have continued training before failing to realize any further gains
in Gf. This dose responsiveness is an important issue for further
study because the exact plot of gain with training could have
important practical implications for those interested in training
fluid intelligence. Our study also does not permit us to know how
long the training gain persists; longitudinal studies will be
required to address that issue.

These limitations notwithstanding, our findings are of general
significance because they provide evidence for enhancement of
fluid intelligence by cognitive training different from training
the test itself. The finding that cognitive training can improve Gf
is a landmark result because this form of intelligence has been
claimed to be largely immutable. Instead of regarding Gf as an
immutable trait, our data provide evidence that, with appropri-
ate training, there is potential to improve Gf. Moreover, we
provide evidence that the amount of Gf-gain critically depends
on the amount of training time. Considering the fundamental
importance of Gf in everyday life and its predictive power for a
large variety of intellectual tasks and professional success, we
believe that our findings may be highly relevant to applications
in education.

Materials and Methods
Participants and Procedure. For this study, we conducted four individual
experiments involving a total of 70 healthy young participants (36 female;

mean age, 25.6 years of age; SD, 3.3) recruited from the University of Bern
community, 35 of whom performed working-memory training in four differ-
ent training settings (one of the participants failed to complete the required
training sessions and was thus discarded from the data analysis, resulting in a
final N of 34). These training groups were matched to four control groups who
did not have training (n ! 35). The crucial difference among the four training
settings was the number of training sessions between pre- and posttests,
ranging from 8 to 19 sessions (i.e., 8 days (n ! 16), 12 days (n ! 22), 17 days (n !
16), and 19 days (n ! 15)), with the control groups receiving the pre- and
posttesting at the same intervals as the trained groups. In each training
setting, participants trained daily, except for the weekends. The posttest took
place at least 1 day after the last training session, with the largest interval
being 2 days.

Materials. Training task. For the training task, we used the same material as
described by Jaeggi et al. (33), which was a dual n-back task where squares
at eight different locations were presented sequentially on a computer
screen at a rate of 3 s (stimulus length, 500 ms; interstimulus interval, 2,500
ms). Simultaneously with the presentation of the squares, one of eight
consonants was presented sequentially through headphones. A response
was required whenever one of the presented stimuli matched the one
presented n positions back in the sequence. The value of n was the same for
both streams of stimuli. There were six auditory and six visual targets per
block (four appearing in only one modality, and two appearing in both
modalities simultaneously), and their positions were determined ran-
domly. Participants made responses manually by pressing on the letter ‘‘A’’
of a standard keyboard with their left index finger for visual targets, and
on the letter ‘‘L’’ with their right index finger for auditory targets. No
responses were required for non-targets.

In this task, the level of difficulty was varied by changing the level of n (34),
which we used to track the participants’ performance. After each block, the
participants’ individual performance was analyzed, and in the following
block, the level of n was adapted accordingly: If the participant made fewer
than three mistakes per modality, the level of n increased by 1. It was
decreased by 1 if more than five mistakes were made, and in all other cases,
n remained unchanged.

One training session comprised 20 blocks consisting of 20 $ n trials resulting
in a daily training time of %25 min.
Transfer tasks. We used standardized fluid intelligence tests, consisting of
visual analogy problems of increasing difficulty. Each problem presents a
matrix of patterns in which one pattern is missing. The task is to select the
missing pattern among a set of given response alternatives. For the experi-
ment with eight training sessions, we used the Raven’s Advanced Progressive
Matrices (RAPM) test, set II (35), whereas for all other experiments, we used
the short version of the Bochumer Matrizen-Test (BOMAT) (36), a more
difficult variant of the RAPM. For the RAPM, we used parallel forms for the
pre- and posttesting by dividing the test into even and odd items (24); for the
BOMAT, we used the published A and B versions. To keep the pre- and posttest
sessions short enough, we allowed limited time (10 min) to complete the task,
and the number of correct solutions provided in that time served as the
dependent variable.¶

To control for the impact of individual differences and gain in working
memory capacity, a digit-span task (38), as well as a reading span task (39), was
used in the pre- and postsession. However, the reading span task was not
assessed in the 8-day group.

¶Although this procedure differs from the standardized procedure, there is evidence that
this timed procedure has little influence on relative standings in these tests, in that the
correlation of speeded and non-speeded versions is very high (r ! 0.95; ref. 37).
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