Metabolic Equations for Estimating Gross VO $_{2}$ (ACSM 2000)

Exercise mode Gross VO_{2} ($\mathrm{ml} \cdot \mathrm{kg}^{-1} \cdot \mathrm{~min}^{-1}$)	$\begin{gathered} \text { Resting VO } \\ \left(\mathrm{ml} \cdot \mathrm{~kg}^{-1} \cdot \mathrm{~min}^{-1}\right) \end{gathered}$	Comments
Walking $\mathrm{VO}_{2}=\left(\mathrm{S}^{\mathrm{a}} \times 0.1\right)+\left(\mathrm{S} \times \mathrm{G}^{\mathbf{b}} \times 1.8\right)$	+ 3.5	1. For speeds of $50-100 \mathrm{~m} / \mathrm{min}^{-1}(1.9-3.7 \mathrm{mph})$ 2. $0.1 \mathrm{ml} \cdot \mathrm{kg}^{-1} \cdot \mathrm{~m}^{-1}=\mathrm{O}_{2}$ cost of walking horizontally 3. $1.8 \mathrm{ml} \cdot \mathrm{kg}^{-1} \cdot \mathrm{~m}^{-1}=\mathrm{O}_{2}$ cost of walking on incline ($\%$ grade of treadmill)
Running $\mathrm{VO}_{2}=\left(S^{\mathrm{a}} \times 0.2\right)+\left(\mathrm{S} \times \mathrm{G}^{\mathbf{b}} \times 0.9\right)$	+3.5	1. For speeds $>134 \mathrm{~m} \cdot \mathrm{~min}^{-1}(>5.0 \mathrm{mph})$ 2. If truly jogging (not walking), this equations can also be used for speeds of $80-134 \mathrm{~m} \cdot \mathrm{~min}^{-1}(3-5 \mathrm{mph})$ 3. $0.2 \mathrm{ml} \cdot \mathrm{kg}^{-1} \cdot \mathrm{~m}^{-1}=\mathrm{O}_{2}$ cost of running horizontally 4. $0.9 \mathrm{ml} \cdot \mathrm{kg}^{-1} \cdot \mathrm{~m}^{-1}=\mathrm{O}_{2}$ cost of running on incline ($\%$ grade of treadmill)
Leg ergometry $\mathrm{VO}_{2}=\left(\mathrm{W}^{\mathbf{c}} / \mathbf{M}^{\mathbf{d}} \times 10.8\right)+3.5$	+3.5	1. For work rates between 50 and 200 W (300-1200 $\mathrm{kgm} \cdot \mathrm{min}^{-1}$) 2. $\mathrm{kgm} \cdot \mathrm{min}^{-1}=\mathrm{kg} \mathrm{x} \mathrm{m} / \mathrm{rev} \mathrm{xrev} / \mathrm{min}$ 3. Monark and Bodyguard $=6 \mathrm{~m} / \mathrm{rev}$; Tunturi $=3$ $\mathrm{m} / \mathrm{rev}$ 4. $10.8 \mathrm{ml} \cdot \mathrm{kg}^{-1} \cdot \mathrm{~W}^{-1}=\mathrm{O}_{2}$ cost of cycling against external load (resistance) $5.3 .5 \mathrm{ml} \cdot \mathrm{kg}^{-1} \cdot \mathrm{~min}^{-1}=\mathrm{O}_{2}$ cost of cycling with zero load
Arm ergometry $\mathrm{VO}_{2}=\left(\mathrm{W}^{\mathrm{c}} / \mathrm{M}^{\text {d }} \times 18.0\right)+$ none	+3.5	1. For work rates between 25 and 125 W (150-750 $\mathrm{kgm} \cdot \mathrm{min}^{-1}$) 2. $\mathrm{kgm} \cdot \mathrm{min}^{-1}=\mathrm{kg} \mathrm{x} \mathrm{m} / \mathrm{rev} \mathrm{xrev} / \mathrm{min}$ 3. $18.0 \mathrm{ml} \cdot \mathrm{kg}^{-1} \cdot \mathrm{~W}^{-1}=\mathrm{O}_{2}$ cost of cycling against external load (resistance) 4. None = due to small mass of arm musculature, no special term for unloaded (zero load) cycling is needed
Stepping $\mathrm{VO}_{2}=\left(\mathrm{F}^{\mathrm{e}} \times 0.2\right)+\left(\mathrm{F} \times \mathrm{ht}^{\mathrm{f}} \times 1.8 \times 1.33\right)$	+3.5	1. Appropriate for stepping rates between 12 and 30 steps/min and step heights between 0.04 m (1.6 in .) and 0.40 m (15.7 in.) 2. $0.2 \mathrm{ml} \cdot \mathrm{kg}^{-1} \cdot \mathrm{~m}^{-1}=\mathrm{O}_{2}$ cost of moving horizontally 3. $1.8 \mathrm{ml} \cdot \mathrm{kg}^{-1} \cdot \mathrm{~m}^{-1}=\mathrm{O}_{2}$ cost of stepping up (bench height) 4. 1.33 includes positive component of stepping up (1.0) + negative component of stepping down (0.33)

[^0]
[^0]: ${ }^{\mathrm{a}} \mathrm{S}=$ speed of treadmill in $\mathrm{m} \cdot \mathrm{min}^{-1} ; 1 \mathrm{mph}=26.8 \mathrm{~m} \cdot \mathrm{~min}^{-1}$.
 ${ }^{\mathrm{b}} \mathrm{G}=$ grade (\% incline) of treadmill in decimal form; e.g., $10 \%=0.10$.
 ${ }^{\mathrm{c}} \mathrm{W}=$ power output in watts; $1 \mathrm{~W}=6 \mathrm{kgm} \cdot \mathrm{min}^{-1}$.
 ${ }^{\mathrm{d}} \mathrm{M}=$ body mass in kilograms; $1 \mathrm{~kg}=2.2 \mathrm{lb}$.
 ${ }^{\mathrm{e}} \mathrm{F}=$ frequency of stepping in steps per minute.
 ${ }^{\mathrm{f}} \mathrm{ht}=$ bench height in meters; $1 \mathrm{in} .=0.0254 \mathrm{~m}$.

