Metabolic Equations for Estimating Gross VO_2 (ACSM 2000)

Exercise mode Gross VO ₂ (ml·kg ⁻¹ ·min ⁻¹)	Resting VO ₂ (ml·kg ⁻¹ ·min ⁻¹)	Comments
Walking $VO_2 = (S^a \times 0.1) + (S \times G^b \times 1.8)$	+ 3.5	1. For speeds of 50-100 m/min ⁻¹ (1.9-3.7 mph) 2. $0.1 \text{ ml} \cdot \text{kg}^{-1} \cdot \text{m}^{-1} = O_2 \cos t \text{ of walking horizontally}$ 3. $1.8 \text{ ml} \cdot \text{kg}^{-1} \cdot \text{m}^{-1} = O_2 \cos t \text{ of walking on incline (% grade of treadmill)}$
Running $VO_2 = (S^a \times 0.2) + (S \times G^b \times 0.9)$	+3.5	 For speeds >134 m·min⁻¹ (>5.0 mph) If truly jogging (not walking), this equations can also be used for speeds of 80-134 m·min⁻¹ (3-5 mph) 0.2 ml·kg⁻¹·m⁻¹ = O₂ cost of running horizontally 0.9 ml·kg⁻¹·m⁻¹ = O₂ cost of running on incline (% grade of treadmill)
Leg ergometry $VO_2 = (W^c/M^d \times 10.8) + 3.5$	+3.5	1. For work rates between 50 and 200 W (300-1200 kgm·min ⁻¹) 2. kgm·min ⁻¹ = kg x m/rev x rev/min 3. Monark and Bodyguard = 6 m/rev; Tunturi = 3 m/rev 4. 10.8 ml·kg ⁻¹ ·W ⁻¹ = O ₂ cost of cycling against external load (resistance) 5. 3.5 ml·kg ⁻¹ ·min ⁻¹ = O ₂ cost of cycling with zero load
Arm ergometry $VO_2 = (W^c/M^d \times 18.0) + none$	+3.5	 For work rates between 25 and 125 W (150-750 kgm·min⁻¹) kgm·min⁻¹ = kg x m/rev x rev/min 18.0 ml·kg⁻¹·W⁻¹ = O₂ cost of cycling against external load (resistance) None = due to small mass of arm musculature, no special term for unloaded (zero load) cycling is needed
Stepping $VO_2 = (F^e \times 0.2) + (F \times ht^f \times 1.8 \times 1.33)$	+3.5	 Appropriate for stepping rates between 12 and 30 steps/min and step heights between 0.04 m (1.6 in.) and 0.40 m (15.7 in.) 0.2 ml·kg⁻¹·m⁻¹ = O₂ cost of moving horizontally 1.8 ml·kg⁻¹·m⁻¹ = O₂ cost of stepping up (bench height) 1.33 includes positive component of stepping up (1.0) + negative component of stepping down (0.33)

 $[^]a$ S= speed of treadmill in m·min $^{-1}$; 1 mph = 26.8 m·min $^{-1}$. b G= grade (% incline) of treadmill in decimal form; e.g., 10% = 0.10. c W= power output in watts; 1 W = 6 kgm·min $^{-1}$. d M= body mass in kilograms; 1 kg = 2.2 lb. e F= frequency of stepping in steps per minute. f ht= bench height in meters; 1 in. = 0.0254 m.